Pages 948-955

THE SITE OF  $1\alpha,25$ -DIHYDROXYVITAMIN D<sub>3</sub> PRODUCTION IN PREGNANCY

SUSUMU SUNAGA\*, NOBORU HORIUCHI\*\*, NAOYUKI TAKAHASHI\*\*, KAZUO OKUYAMA\* and TATSUO SUDA\*\*

\* Department of Pediatrics, School of Medicine, Showa University, and \*\* Department of Biochemistry, School of Dentistry, Showa University, 1-5-8, Hatanodai, Shinagawa-ku, Tokyo 142, Japan

Received August 24,1979

Summary: Metabolism of 25-hydroxyvitamin  $D_3$  (25-OH- $D_3$ ) in pregnancy was investigated <u>in vitro</u> in New Zealand White rabbits fed a rabbit chow. Kidney homogenates from pregnant mothers and fetuses were separately incubated with  $[^3H]$ -25-OH- $D_3$ . The homogenates from fetuses produced significant amounts of  $[^3H]$ -1 $\alpha$ ,25-dihydroxyvitamin  $D_3$  [1 $\alpha$ ,25-(OH)2- $D_3$ ] from its precursor, while those from mothers predominantly produced  $[^3H]$ -24,25-dihydroxyvitamin  $D_3$  [24, 25-(OH)2- $D_3$ ]. The identity of the radioactive metabolites produced from  $[^3H]$ -25-OH- $D_3$  was established by periodate cleavage and comigration with synthetic 1 $\alpha$ ,25-(OH)2- $D_3$  or 24,25-(OH)2- $D_3$  on high pressure liquid chromatography. These results clearly indicate that the fetal kidney is at least one of the sites of  $1\alpha$ ,25-(OH)2- $D_3$  synthesis in pregnancy.

## INTRODUCTION

The most biologically active metabolite of vitamin  $D_3$ ,  $1\alpha$ , 25-dihydroxy-vitamin  $D_3$  [ $1\alpha$ , 25-(OH) $_2$ - $D_3$ ], has been thought to be synthesized exclusively in the kidney (1). The concept was derived from the experimental results that nephrectomy completely abolishes the formation of [ $^3$ H]- $1\alpha$ , 25-(OH) $_2$ - $D_3$  from [ $^3$ H]-25-hydroxyvitamin  $D_3$  (25-OH- $D_3$ ) (1-3), and that the circulating levels of  $1\alpha$ , 25-(OH) $_2$ -D are not detectable in anephric animals or patients (4,5).

Very recently, Weisman et al (6) and Kenney Gray et al (7) independently demonstrated that nephrectomy of pregnant, vitamin D-deficient rats reduced but did not abolish the in vivo conversion of [ $^{3}$ H]-25-OH-D $_{3}$  to [ $^{3}$ H]-1 $\alpha$ ,25-(OH) $_{2}$ -D $_{3}$ . The former group (6) reported that the feto-placental unit is the most likely site of  $1\alpha$ ,25-(OH) $_{2}$ -D $_{3}$  production in the anephric pregnant ani-

<sup>†</sup> To whom all correspondence should be addressed.

Abbreviations used: 25-OH-D<sub>3</sub>, 25-hydroxyvitamin D<sub>3</sub>;  $1\alpha$ ,25-(OH)<sub>2</sub>-D<sub>3</sub>,  $1\alpha$ ,25-dihydroxyvitamin D<sub>3</sub>; 24,25-(OH)<sub>2</sub>-D<sub>3</sub>, 24,25-dihydroxyvitamin D<sub>3</sub>.

mals. The latter group (7) could not find any detectable amounts of  $[^3H]$ - $1\alpha$ ,25- $(OH)_2$ - $D_3$  in the fetal kidneys after administration of  $[^3H]$ -25-OH- $D_3$  to pregnant, vitamin D-deficient animals, so they concluded that the site of  $1\alpha$ -hydroxylation after nephrectomy of pregnant rats was extra-renal, probably maternal and/or fetoplacental, in origin. We now report that fetal kidney homogenates from rabbits fed a laboratory chow produce in vitro  $1\alpha$ ,25- $(OH)_2$ - $D_3$  from its precursor. These results indicate that the fetal kidney is at least one of the sites of  $1\alpha$ ,25- $(OH)_2$ - $D_3$  synthesis in pregnant animals.

#### MATERIALS AND METHODS

Animals: Pregnant rabbits (New Zealand White strain) were obtained from a local distributor. They were fed a rabbit chow (Oriental Co. Ltd., Tokyo) containing 0.85% calcium, 0.66% phosphorus, and 1.0 U vitamin D<sub>3</sub>/g diet adlibitum throughout the pregnancy. From the 26th day of gestation to the birth, kidneys were removed from pregnant mothers and fetuses under anesthesia with pentobarbital (25 mg/kg). The kidneys were rinsed and homogenized in 4 volumes of 0.25 M sucrose containing 15 mM Tris~HCl (pH 7.4), 2 mM MgCl<sub>2</sub>, and 5 mM sodium succinate.

Incubation and Chromatography: The homogenates (1.5 ml) from individual mothers and from 2-4 fetuses (pooled) were separately incubated for 30 min at 37°C with 3.8 nmol of [26,27-3H]-25-OH-D<sub>3</sub> (Radiochemical Centre, Amersham), as described previously (8,9). Extraction and chromatography of the extracts (Sephadex LH-20 and high pressure liquid chromatography, HPLC, Waters Model 204 equipped with a Zorbax-Sil column) were also performed, as previously described (8,9).

Identification of the metabolites of 25-OH-D3: The metabolites of  $[^3H]$ -25-OH-D3 was identified by co-chromatography with authentic  $1\alpha$ ,25- $(OH)_2$ -D3 or 24R,25-dihydroxyvitamin D3  $[24R,25-(OH)_2$ -D3](gifts from Dr. M. R. Uskokovič, Hoffmann-LaRoche Inc., New Jersey). The metabolites of  $[^3H]$ -25-OH-D3 were also identified by periodate cleavage. The radioactive metabolites on HPLC were dissolved in 2 ml of methanol and treated with 1 ml of 5% NaIO4 at room temperature overnight. The reaction mixture was extracted with chloroform, and the rajoactivities of the extracts were determined.

## RESULTS

Figure 1 illustrates Sephadex LH-20 chromatographic profiles of extracts of kidney homogenates prepared from a maternal rabbit (on the 28th day of gestation) (A) and her fetuses (B). The homogenates from the mother metabolized in vitro [<sup>3</sup>H]-25-OH-D<sub>3</sub> primarily to a polar peak which appeared in the fractions numbered 18 to 29. The fetal kidneys, on the other hand, in vitro converted [<sup>3</sup>H]-25-OH-D<sub>3</sub> exclusively to a more polar peak which ap-

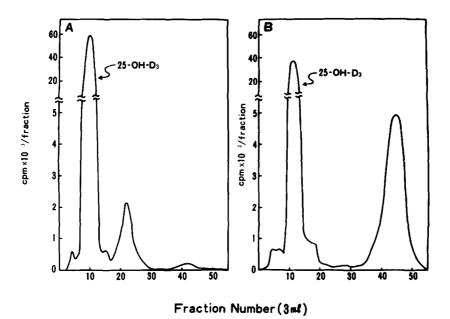



Fig 1. Sephadex LH-20 chromatographic profiles of extracts of kidney homogenates from a pregnant rabbit (on the 28th day of gestation)(A) and her fetuses (B). Kidney homogenates prepared from 3 fetuses were incubated, extracted, and applied to Sephadex LH-20 column. The columns were eluted with a solvent of 65% chloroform - 35% n-hexane. Three ml fractions were collected.

peared in the fractions numbered 35 to 54 on the Sephadex column. No radioactivity appeared in the fractions (tubes 18-29) in the fetuses.

When the polar peak synthesized by the maternal kidney was applied to HPLC column, it was separated into 3 peaks: two unknown peaks referred to as peaks X and Y, and a peak which comigrated to exactly the same position as authentic  $24R,25-(OH)_2-D_3$  (Fig. 2A). When the radioactive fraction which coincided with authentic  $24R,25-(OH)_2-D_3$  on HPLC was treated with 5% NaIO<sub>4</sub> overnight, the chloroform extracts lost radioactivity almost completely (Table 1). The maternal kidney produced in vitro only small amounts of the metabolite suspected to be  $10,25-(OH)_2-D_3$  (Fig. 1A).

When the radioactive fraction (tubes 35-54) on the Sephadex column produced by the fetal kidneys was applied to the HPLC column, as much as 89% of the radioactivity comigrated to exactly the same position as authentic  $1\alpha$ ,25-(OH)<sub>2</sub>-D<sub>3</sub> (Fig. 2B). The radioactivity suspected to be  $1\alpha$ ,25-(OH)<sub>2</sub>-D<sub>3</sub> was completely insensitive to the periodate cleavage (Table 1).

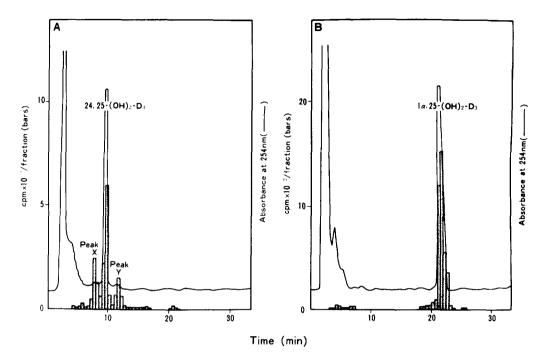



Fig 2. HPLC profiles of the radioactive peaks shown on Fig 1. Panel A and B represent HPLC profiles of the radioactive peak (tubes 18-29) on Fig 1A and that (tubes 35-54) on Fig 1B, respectively. Before applying to HPLC columns, 500 pmol of authentic  $24R,25-(OH)_2-D_3$  (in panel A) or  $1\alpha,25-(OH)_2-D_3$  (in panel B) were added to each sample. The columns were eluted with a solvent of 10% isopropanol in n-hexane (13). The solid line indicates absorbance at 254 nm, and the dotted bar represents radioactivity in each 30 sec fraction.

Table 1 The sensitivity to periodate oxidation of the 24,25-(OH) $_2$ -D $_3$  and the  $1\alpha$ ,25-(OH) $_2$ -D $_3$  fractions after Sephadex LH-20 column chromatography and/or HPLC.

|                                                  | Before<br>NaIO <sub>4</sub> tr | After | Recovery |
|--------------------------------------------------|--------------------------------|-------|----------|
| 24,25-(OH) <sub>2</sub> -D <sub>3</sub> Fraction | dpm                            | dpm   | 8        |
| Sephadex LH-20                                   | 2391                           | 1086  | 45       |
| LH-20 + HPLC                                     | 2104                           | 65    | 3        |
| $1\alpha,25-(OH)_2-D_3$ Fraction                 |                                |       |          |
| Sephadex LH-20                                   | 4636                           | 4676  | 101      |
| LH-20 + HPLC                                     | 2025                           | 2038  | 100      |

Metabolites of 25-OH-D<sub>3</sub> produced by kidney homogenates from maternal and fetal rabbits. Table 2

| Sephadex IH-20         Sephadex IH-20         Sephadex IH-20         Sephadex IH-20           ion)         fetuses)         Peak x 24,25-(OH) 2-D3         Peak Y           Mother         7.6 %         29.2 %         55.7 %         7.2 %         0.6 %           Petus (B)         trace         —         —         7.5 ± 2.3           Mother         3.2         25.0         56.5         5.7         0.8           Mother         3.0         27.7         42.0         8.5         1.1           Fetus (B)         trace         —         —         14.0 ± 1.4           Mother         1.4         —         2.2           Fetus (9)         trace         —         —         10.0 ± 1.2 | Pregnant              |            | 24,25-(C       | 24,25-(OH)2-D3 Fractions | ractions         |        | $1\alpha,25-(OH)_2-D_3$ Fractions | )3 Fractions |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------|----------------|--------------------------|------------------|--------|-----------------------------------|--------------|
| Mother       3.2       25.7       8       7.2       0.6       9         Mother       3.2       25.0       55.7       0.6       9         Fetus (8)       trace       —       7.5 ± 2.3         Mother       3.2       25.0       56.5       5.7       0.8         Fetus (10)       trace       —       27.7       42.0       8.5       1.1         Fetus (8)       trace       —       —       14.0 ± 1.4         Mother       1.4       —       —       2.2         Fetus (9)       trace       —       —       —       2.2                                                                                                                                                                          | Rabbits               | 1          | Sephadex LH-20 | Sephe                    | adex LH-20 + HPL | Ü      | Sephadex LH-20                    | LH-20 + HPLC |
| Wother         7.6 %         29.2 %         55.7 %         7.2 %         0.6 %           Fetus (8)         trace         —         —         7.5 ± 2.3           Mother         3.2         25.0         56.5         5.7         0.8           Fetus (10)         trace         —         21.4 ± 7.0           Nother         3.0         27.7         42.0         8.5         1.1           Fetus (8)         trace         —         —         14.0 ± 1.4           Mother         1.4         —         —         2.2           Fetus (9)         trace         —         —         10.0 ± 1.2                                                                                                   | (Days aft<br>gestatic |            | of<br>es)      |                          | 24,25-(он)2-D3   | Peak Y |                                   |              |
| Fetus (8)       trace       —       7.5 ± 2.3         Mother       3.2       25.0       56.5       5.7       0.8         Fetus (10)       trace       —       21.4 ± 7.0         Mother       3.0       27.7       42.0       8.5       1.1         Fetus (8)       trace       —       14.0 ± 1.4         Mother       1.4       —       2.2         Fetus (9)       trace       —       10.0 ± 1.2                                                                                                                                                                                                                                                                                                  | day                   | Mother     | 7.6 %          | 29.2 %                   | 55.7 %           | 7.2 %  | % 9.0                             | ж<br>        |
| Mother         3.2         25.0         56.5         5.7         0.8           Fetus (10)         trace         —         —         21.4 ± 7.0           Mother         3.0         27.7         42.0         8.5         1.1           Fetus (8)         trace         —         —         14.0 ± 1.4           Mother         1.4         —         —         2.2           Fetus (9)         trace         —         —         10.0 ± 1.2                                                                                                                                                                                                                                                          | (31)                  | Fetus (8)  | trace          | 1                        | l                | 1      | 7.5 ± 2.3                         | 82.1 ± 8.6   |
| Fetus (10)       trace       —       21.4 ± 7.0         Mother       3.0       27.7       42.0       8.5       1.1         Fetus (8)       trace       —       14.0 ± 1.4         Mother       1.4       —       2.2         Fetus (9)       trace       —       10.0 ± 1.2                                                                                                                                                                                                                                                                                                                                                                                                                           | (00)                  | Mother     | 3.2            | 25.0                     | 56.5             | 5.7    | 0.8                               |              |
| Mother       3.0       27.7       42.0       8.5       1.1         Fetus (8)       trace       —       —       14.0 ± 1.4         Mother       1.4       —       2.2         Fetus (9)       trace       —       10.0 ± 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (42)                  | Fetus (10) | trace          | 1                        | l                |        | 21.4 ± 7.0                        | 89.4 + 5.0   |
| Fetus (8)       trace       —       14.0 ± 1.4         Mother       1.4       —       2.2         Fetus (9)       trace       —       10.0 ± 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (36)                  | Mother     | 3.0            | 27.7                     | 42.0             | 8.5    | 1.1                               | 1            |
| Mother 1.4 2.2 Fetus (9) trace 10.0 ± 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3 (28)                | Fetus (8)  | trace          |                          |                  |        | 14.0 + 1.4                        | 88.0 + 6.2   |
| Petus (9) trace 10.0 ± 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60                    | Mother     | 1.4            | {                        |                  |        | 2.2                               | 1            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 (28)                | Fetus (9)  | trace          |                          |                  | }      | 10.0 ± 1.2                        | 86.3 ± 4.3   |

Data on the  $24,25-(OH)_2-D_3$  and the  $1\alpha,25-(OH)_2-D_3$  fractions from Sephadex LH-20 columns are expressed as percentage of the radioactivities recovered in each 1-55 fractions. The  $24,25-(OH)_2-D_3$  and the  $1\alpha,25-$ Each kidney homogenates prepared from 2-4 fetuses were separately incubated, extracted, and applied to (OH)2-D3 fractions were separately applied to HPLC columns. Figures after Sephadex LH-20 + HPLC are expressed as percentage of the sum of the radioactivity recovered in each 1-70 fractions. Data on fetuses are mean + SE of 3 incubations. Sephadex LH-20 and HPLC.

Table 2 shows the percentage distribution of the metabolites of [3H]-25-OH-D<sub>3</sub> produced in vitro by maternal and fetal kidneys from pregnant rabbits on the 26th - 31st day of gestation. The 24,25-(OH)2-D3 fraction from the Sephadex columns produced by the maternal kidneys was separated into 3 peaks on HPLC, and the percentage distribution was 25-30% in peak X, 42-57% in 24,25-(OH)2-D3, and 5-8% in peak Y. Peaks X and Y resembled chromatographically peaks C and E (the metabolites of 24,25-(OH) 2-D3 produced by chick kidney homogenates) recently reported by Takasaki et al. (9). The  $1\alpha,25-$ (OH)2-D3 fraction from the Sephadex columns produced by the fetal kidneys was considered to be mainly  $1\alpha,25-(OH)_2-D_3$ , since 82-89% of the radioactivity was eluted in the position to which authentic 1a,25-(OH)2-D3 comigrated on HPLC. It was characteristic without any exception that all of the fetal kidneys in vitro produced only  $1\alpha,25-(OH)_2-D_3$  from its precursor.

## DISCUSSION

Recently, attention has been focused on the vitamin D metabolism in pregnancy. Weisman et al.(6,10) and Kenney Gray et al.(7) independently reported that nephrectomy of pregnant, vitamin D-deficient rats reduced but did not abolish the in vivo conversion of 25-OH-D<sub>3</sub> to  $1\alpha,25$ -(OH)<sub>2</sub>-D<sub>3</sub>. Weisman et al. (10) reported that homogenates of fetal rat kidneys produced  $1\alpha,25-(OH)_2-D_3$ from 25-OH-D3 in vitro, though its percentage conversion was only 1%, whereas the placenta was unable to perform this transformation in vitro. The rat is not a suitable animal to measure in vitro renal  $1\alpha$ -hydroxylase activity, because of the presence of the  $1\alpha$ -hydroxylase inhibitor (11). Kenney Gray et al.(7) could not find any detectable amounts of  $[^{3}H]-1\alpha$ , 25-(OH)<sub>2</sub>-D<sub>3</sub> in the fetal kidneys after administration of [3H]-25-OH-D3 to pregnant vitamin Ddeficient animals. They suggested two sites of la-hydroxylation of 25-OH-D3, one renal and the other extra-renal, either maternal or fetoplacental, in the pregnant, vitamin D-deficient rats.

The present study clearly demonstrates that the fetal kidney is at least one of the sites of  $1\alpha,25-(OH)_2-D_3$  synthesis in pregnant animals. Fetal

kidneys from normal rabbits fed a laboratory chow can produce <u>in vitro</u> significant amounts of  $1\alpha,25-(OH)_2-D_3$  from its precursor. The reason kidney homogenates from rabbit fetuses perform this transformation <u>in vitro</u> even in a vitamin D-supplemented state is not known. It is, however, obvious that the fetal rabbit kidney is useful in measuring <u>in vitro</u> renal  $1\alpha$ -hydroxylase activity in mammals and in studying unique 25-OH-D3 metabolism in pregnancy.

It is of great interest that the maternal rabbit kidney synthesizes primarily  $24,25-(OH)_2-D_3$ , while the fetal kidney produces only  $1\alpha,25-(OH)_2-D_3$  from its precursor. Lester et al.(12) suggested the possibility of independent control of  $25-OH-D_3$  metabolism in the fetus. Our results confirm their suggestion. According to the calculations of in vivo metabolism by Kenney Gray et al.(7), plasma levels of  $1\alpha,25-(OH)_2-D_3$  are more than 4 times higher than the fetal plasma levels of the metabolite even after nephrectomy. Some portions of the  $1\alpha,25-(OH)_2-D_3$  appearing in maternal plasma after nephrectomy, therefore, may be derived from the fetal kidney. The independent control of  $25-OH-D_3$  metabolism in the rabbit fetus is of considerable interest, and is currently under investigation in our laboratories.

# REFERENCES

- 1. Fraser, D. R., and Kodicek, E. (1970) Nature (London) 228, 764-766.
- Gray, R., Boyle, I. T., and DeLuca, H. F. (1971) Science (Washington) 172, 1232-1234.
- 3. Norman, A. W., Midgett, R. J., Myrtle, J. F., and Nowicki, H. G. (1971) Biochem. Biophys. Res. Commun.  $\underline{42}$ , 1082-1087.
- 4. Haussler, M. R. (1974) Nutr. Rev. 32, 257-266.
- Eisman, J. A., Hamstra, A. J., Kream, B. E., and DeLuca, H. F. (1976)
   Arch. Biochem. Biophys. <u>176</u>, 235-243.
- Weisman, Y., Vargas, A., Duckett, G., Reiter, E., and Root, A. W. (1978) Endocrinology 103, 1992-1996.
- Kenney Gray, T., Lester, G. E., and Lorenc, R. S. (1979) Science (Washington) 204, 1311-1313.
- 8. Horiuchi, N., Suda, T., Sasaki, S., Ogata, E., Ezawa, I., Sano, Y., and Shimazawa, E. (1975) Arch. Biochem. Biophys. 171, 540-548.
- 9. Takasaki, Y., Horiuchi, N., and Suda, T. (1978) Biochem. Biophys. Res. Commun. 85, 601-607.
- Weisman, Y., Sapir, R., Harell, A., and Edelstein, S. (1976) Biochim. Biophys. Acta 428, 388-395.

- 11. Botham, K. M., Tanaka, Y., and DeLuca, H. F. (1974) Biochemistry  $\underline{13}$ , 4961-4966.
- Lester, G. E., Kenney Gray, T., and Lorenc, R. S. (1978) Proc. Soc. Exp. Biol. Med. <u>159</u>, 303-307.
- 13. Ikekawa, N., and Koizumi, N. (1976) J. Chromatogra. <u>119</u>, 227-232.